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Fig. 3. Variation of the magnitude of transmission coefficient of a single
thick aperture in a rectangular waveguide with frequency. (a) For aperture
thickness of 0.32 cm. i — Present method. i1 —» Experimental curve. (b)
Same curves for aperture thickness of 0.638 cm.

the formulation suggested by Marcuvitz shows a considerable de-
viation which increases with increasing frequency. The same trend
is also observed for the equivalent network parameters presented
in Fig. 4(a) and (b). It is therefore concluded that the moment
method formulation used in the present work yields more accurate
results as compared to the variational formulation. This may be
ascribed to the inclusion of the effect of the higher order modes in
the stub waveguide which the variational method does not permit.
It is worthwhile to pointout that the moment method formulation
used in the present paper takes into account the mutual interactions
between the interfaces 1 and II as well as III and IV. The method
can also be extended to the case of multiple apertures.
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‘homogeneous and layered dielectrics between two ground planes. For
the homogeneous dielectric case, an infinite number of dipole images
due to the top and bottom ground planes are replaced by a few complex
dipole images. For the layered dielectric case, the dipole images due to
both the dielectric interfaces and the ground planes are replaced by a
few complex dipole images. In addition, the waveguide modes of LSE
and LSM types trapped by the two ground planes, and the surface
wave modes of LSE and LSM types trapped by the dielectric slabs,
both excited by the dipole, are included in the closed form expressions.
The accuracy of the closed form expressions is confirmed by the nu-
merical integration of spectral integrals.

I. INTRODUCTION

The vector and scalar potentials of a horizontal and infinitesimal
electric dipole in a homogeneous dielectric bounded by two ground
planes, as shown in Fig. 1(a), can be expressed in either an infinite
image expansion or an infinite modal expansion {2]. It has been
shown in [3] that the image expansion converges very slowly when
the observation point is far (e.g., >0.2)\,) from the dipole, and the
modal expansion converges very slowly when the observation point
is close (e.g., <0.02)y) to the dipole. As a consequence, a ‘‘relay
race’’ scheme of image and modal expansions was used in calcu-
lating the vector and scalar potential Green’s functions in the anal-
ysis of complex stripline circuits [3]. A similar scheme was also
used in a static analysis of two dimensional homogeneous striplines
with finite metallization thickness [4].

For an electric dipole in a layered dielectric between two ground
planes, e.g., a microstrip substrate shielded by a grounded top plate
(Fig. 1(b)), the vector and scalar potential Green’s functions are
usually represented as spectral integrals, from which a modal ex-
pansion can in principle be obtained. The spectral function of a
dipole in general multilayer dielectric substrates has been discussed
in [5]. Due to the presence of dielectric interfaces, all the wave-
numbers appearing in the modal expansion have to be found nu-
merically by solving the eigenvalue equations of the LSE and LSM
modes. This modal expansion will be slowly convergent when the
obsetvation point is close to the dipole.

In this paper, we use the complex image technique of [1] to de-
rive simple closed form expressions of the vector and scalar poten-
tials for the problems shown in Fig. 1(a)-(b). Compared to the open
microstrip substrate of [1], two new issues arise due to the presence
of the two ground planes. The first one is that the summation of
the quasi-dynamic images obtained under the approximate condi-
tion k,q = k,; in spectral integrals [1], [6] converges very slowly
when the observation point is far from the dipole. This implies that
extracting quasi-dynamic images is not efficient when two ground
planes exist. The second issue is that the waveguide modes of LSE
and LSM types can exist between the two ground planes. These
waveguide modes must be extracted from the spectral integrals,
along with the surface wave modes supported by the dielectric slabs.
These two problems will be solved in this paper.

It is noted that for open microstrip structures, closed form
asymptotic Green’s functions have been developed in [11]-[13]. In
this paper, we use the complex image method of [1] to derive closed
form spatial Green’s functions for shielded microstrip structures.

In the following sections, the homogeneous dielectric problem
of Fig. 1(a) is discussed first to show the techniques used in this
paper. Then these techniques are applied to solve the layered di-
electric problem of Fig. 1(b). It will be evident that the same tech-
niques are also applicable to obtain the closed form vecter and sca-
lar potentials for an electric dipole in multiple dielectric layers
between two ground planes. ’
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Fig. 1. (a) Horizontal electric dipole located between two ground planes.
(b) Horizontal electric dipole located in a top-covered microstrip
substrate.

I. HoMOGENEOUS DIELECTRIC BETWEEN Two GROUND
PLANES

Fig. 1(a) shows an x-directed electric dipole located in the air
region bounded by two ground planes. Using the integral transfor-
mation technique [2], the vector and scalar potential Green’s func-
tions in spatial domain can be represented in the following integral
form:

47 = 1
"L GF = 4ne,G, = S Tog - HY K, 00k, dk, (1)

Ho ~= j2k;o
where
(1 _ e~f2k;oz’)(1 _ e'-j2k;0(l7—Z))e—jk:O(Z—Z')
Trp = 1 — ¢ 7o ,  forz=zz’
2 2 2 2 2
ki = ki — k,, ki = w poep. (2)

Tt is the transmission coeflicient of TE, (i.e., with H, = 0, also
known as LSM [2]) plane wave spectrum from source plane (z =
z') to field plane (z = z). It can be easily derived using a wave
matrix technique similar to [2], [7]. By exchanging the locations
of z and z', the expression (2) is also applicable forz < z’.

To obtain an image expansion from (1), we expand Ty into Tay-
lor series, i.e.,

Tog = go {exp [—jk,o@2nb + 7 — 2)] — exp [—jkyo

c@nb + 7 + 2] — exp [—jkol2(r + Db — 7z — 2]
+ [exp — jkol2(n + Db — z + Z'1}}. 3

Substituting (3) into (1), and using the Sommerfeld Identity [8],
the spectral integral (1) can be put into the following series form:

47
— G = 47¢, G,
Ho :
® e -jkarn1 e -jkornz e jkorn3 e -jkorna
= 2 - - + @
n=0 Tni Y2 Tn3 Tna
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where

= Vp2+ Qb+ -2, rp=Vol+ Qb +2z+ )

ta =V + 200 + Db — z = 2T,

ra = Vpr+ 200 + Db — 7z + 215

Obviously expression (4) stands for a summation of an infinite
number of images of the dipole due to the upper and lower ground
planes.

To obtain a modal expansion from (1), we rewrite Tyg of (2) in
the following form:

1 1 <kzob> sin (k,z’) sin (k,o(b — 2))

Ty = —— g (22 .
J2%e T 2k, 8\ 2 sin® (k.ob/2)

®

It is noticed that the function at the right hand side of (5) is even
with respect to k.o, which implies that there are no branch points
on the complex &, plane. In other words, the function at the right
hand side of (5) is a meromophic function on the complex k, plane.
Physically, this feature corresponds to the fact that there is no ra-
diation into infinity in the stripline circuits, since all the energy is
restricted between the upper and lower ground planes. Using the
Mittag-Leffler theorem for the tangent factor [9], expression (5)
can be expanded into the following series:

hat 1

gl kf, — [k} — (nm /b)]
n=odd

. sin (k;o2') sin (ko — 2))

sin? (k,0b/2)

(6)

Substituting (6) into (1), and using the residue theorem [9] by en-
closing all the singularities in the lower half of the complex £,
plane, the spectral integral (1) can be put into the following series
form:

4
T G¥ = 47e, G,
o
T e Lo . (nw’\ . [na(b — 2)
=% E}l H§(k,,p) - sin <T> sin <T )
n=odd
where

k2, = ki — (nm/b)*

and Hf,z) (+) stands for the second kind Hankel function of zero
order. Obviously the expression (7) is a summation of an infinite
number of modes excited by the dipole in a parallel plate wave-
guide. The terms with k, > nw /b correspond to the propagating
modes which decay with a distance dependence of 1/ «/;_) . The terms
with ky < nw /b correspond to evanescent modes where the Hankel
function of imaginary argument becomes a Kelvin function. If b <
No/2,i.e., kg < /b, all the modes supported by the parallel plates
are evanescent.

The modal expansion (7), which includes a finite number of
propagating modes and an infinite number of evanescent modes,
converges very slowly when the observation point is close (e.g.,
<0.02)\p) to the dipole. On the other hand, the image expansion
(4), which includes an infinite number of dipole images due to the
two ground planes, converges very slowly when the observation
point is far (e.g., >0.2\g) from the dipole. The convergence rates
of these two expansions versus the field-to-source point distances
have been studied in [3].

In the following, we use the complex image technique of [1] to
derive a closed form expression, which exploits the merits of both
image and modal expansions and converges rapidly over the whole
range of the source-to-field point distances.

The term 7'z can be rewritten as follows:

Trg = e/ 4 (Tqg — /57 — j2kyoP,) + j2Kk.0 P
(3)

where P, is a truncated series of the right hand side of (6). The
series is truncated such that only the propagating modes (i.e., real
k,,) are included in P,. For instance, if b < 0.5\, then P,, = O;
if 0.5N; < b < A, then P,, is equal to only the first term of the
series in (6).

Trg is rewritten in this fashion for rapid convergence in the spa-
tial domain, since the first and third terms have analytical inverse
Hankel transforms. The second term of (8) can be approximated
by a short exponential series using Prony’s method [10]:

N
TTE . e—jk;o(z~z’) _jZk:OPm _ ,Z] ale—b,k:o’ N<35 (9)
=

where a, and b, are complex coefficients. For a chosen N, a; and b,
are calculated for a given approximation path using Prony’s
method. The approximation path on the complex k., plane is given
by a parametric equation, k,o/ky = —jt + (1 — t/Tp), 0 <t <
Ty, and has been discussed in {1]. Taking N in the range of 3 ~ 5
yields an accuracy of better than 0.5% in calculating the spatial
domain Green’s function. Substituting (8), (9) into (1), we can put
the spectral integral (1) into the following closed form:

4
;75 G¥ = 4n¢yG, = Gy + G, + G,, (10)
0
where
e—/koro —
Go=——— fo=vo' +@—2) (11)
0
N e—jkun
Gy = X a,——, r=p> + (-jb) (12)
r ¥ ‘ nwz’ nw(b — 2)
_ 2) : : -
G, —j_b ngl Hg'(k,,p) * sin <-—b——> sin <—b—————> (13)
n=odd

where G, is the source term due to the dipole itself, G, corresponds
to the complex image terms, and G, corresponds to the propagat-
ing mode terms. It is noted in (11) and (12) that both the dipole
and its complex images are located in a homogeneous free space,
and represent an -approximation of the evanescent modes. In other
words, these dipole sources give the same near field as that given
by an infinite number of evanescent modes. In (13), M is the num-
ber of modes extracted from the spectral integral (1). If0 < b <
No/2, then M = 0; if \g/2 < b < Ay, then M = 1; and so on.
For typical structures used in microwave stripline circuits,
(N + M) is no greater than 5 ~ 7.

To show the accuracy of the complex image Green’s function
(10), an example of b/ Ny = 0.7, z = 2z’ = 0.3); is tested. In this
example, only one LSM mode with k, /k, = 0.69985 is extracted,
and four complex images are used. The Green’s functions calcu-
lated using closed form expression (10) and the exact image and
modal expansions (4), (7) are plotted in Fig. 2. It is secen that the
difference is indistinguishable, and generally <0.5%.



398 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 40, NO. 3, MARCH 1992

3.0 7 logyo{4meeCy)

25 ] b=0.7X¢

- z=2'=0.3)o
] * * ¥ numerical integration
— closed form

2.0 -

1.5 ]

1.0

0.5

0.0 T T ,

-2.0 ~1.0 0.0

1.0
logiokep

Fig. 2. Amplitude of 4mey G, for a homogeneous parallel plate structure
of Fig. 1(a), where a pair of degenerate LSE and LSM modes are excited
by the dipole.

III. LAYERED DieLECTRICS BETWEEN Two GROUND PLANES

As shown in Fig. 1(b), an x-directed electric dipole is located in
air between the dielectric interface and the top ground plane. The
spatial domain vector and scalar potentials in the air region can be
represented in the following integral forms:

|
¥ = i‘—;’r S e e HO &, p)k, dk, (142)
—® 70
G, =1 Sw L - HP(k, p)k, dk (14b)
T dmeg Jow 2k 1 O VPR R
where
[1 T e—jZk:O(d—:)] [1 + Re e~j2k:02']
T = (T™) g a0l = 2)
E:FM) 1 + R e/ ’
G %))
forz = 7’ (15a)
k2 1 aTTM>
T, = Trg + -2 Trg + — =M 15b
g TE P < ™t e 0z (15b)

where Rrp and Ryy are respectively TE, and TM, (also known as
LSM and LSE, respectively [2]) wave reflection coefficients from
the microstrip substrate. By exchanging the locations of z and 7/,
the expressions in (15) are also applicable for z < z'. They can be
derived by using the wave matrix technique [2], [7]:

r}“(l)i + e"jZ’»:lh ™ —j2kz1h

riy —e
o (19
The reflection coefficients rlg = (k,, — k,0)/(ky + k,o) and rTM
= (ko — €k.0)/(k;; + € ko) are the same as those given in [1].

Although we can, in principle, get a modal expansion from (14)
by finding all the eigenvalues (i.e., roots of the denominators of
(15a)), the convergence of this modal expansion will be very slow
for the near field calculation. On the other hand, an image expan-
sion from (14) is very difficult due to the presence of dielectric
interfaces. We here use the complex image technique of [1] to de-
rive a closed form expression for the spectral integrals in (14). For
conciseness, only G, is examined below.

Ryg = — Ry = —
TE 1 + r']l‘(])i e—12k<|h7 ™

Similar to (8), we first rewrite T, in (14b) as follows:

T, = e (T, — e~ — j2k o P,) + j2k.o P,

(17
where in this case:

2k,, Res,

P, = —,
M p(TEandTM) k% — kf,,,

Res, = lim (k, — k,,) - T, (18)

kp = kop
where k,, stands for a pole on the real axis of complex &, plane.
The poles located in [0, ko] correspond to the waveguide modes of
both LSE and LSM types trapped by the top and bottom ground
planes, and the poles in [kq, Ve, ky] correspond to the surface wave
modes of both LSE and LSM types trapped by the dielectric slab.
The poles located on the imaginary axis of complex &, plane are
not extracted from the spectral function 7,. Their contributions to
the spectral integral will be included in the complex images dis-
cussed below.

Similar to (8), it is noted in (17) that only the source term
e =) and the propagating mode terms j2k,o P,, are extracted
from the spectral function 7. This is different from [1] where some
nearby (and therefore strong) quasi-dynamic images were extracted
as well. Due the presence of top and bottom ground planes, the
quasi-dynamic images, derived under the approximation condition
k.o = k, [1], [6], have the form of a double summation which
converges slowly. For this reason, we now approximate all the re-
maining terms (T, — ¢ 7%%¢~%) — j2k (P, ) by a short exponential
series of complex images similar to (9), using Prony’s method.
From the Sommerfeld identity and the residue theorem, the follow-
ing closed form expression for G, is obtained:

dwegG, = Go + G, o, + Gy o, (19)
where
¢ ~Jkoro
G, = , ro=~pt + (z — ) 20)
Ty
N griken
Gpo = 2 a,——, r,=p? + (=jb,) @n
1=1 r;
1 5
=—(-2mj) 22 Res,HY(k .2
Ga.pm 47e, (=27) P(TEand TM) esqHo Koy )k @2)

It is seen in (19) that the closed Green’s function is composed of a
source term Gy, N complex image terms and the possible propa-
gating mode terms of LSE and LSM types. For typical structures
used in microwave integrated circuits, the total number of terms in
(19) is no greater than 10.

A similar closed form expression for G can also be obtained
by processing the spectral function Trg in the same manner as T,.
The final solution is given below:

4r Gy =Gy + G}, + G, (23)
Ho
where G, has the same form as (21) except for different coeffi-
cients a, and b,, and G ,,, has the same form as (22) except that
only the propagating modes of TE_ (i.e., LSM) type are involved
in GX .

To show the accuracy of the complex image Green’s functions
(19) (23), a shielded microstrip substrate with €, = 12.6, h/\y =
0.1, d/N; = 0.6 (see Fig. 1(b)) is tested. In this example, three
LSE modes and two LSM modes are excited by the dipole. The
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Fig. 3. Amplitude of 47¢, G, for a top-covered microstrip structure of Fig.
1(b), where three LSE modes and two LSM modes are excited by the di-
pole.

Green’s function 4me, G, calculated using closed form expression
(19) and the numerical integration of (14b) is plotted in Fig. 3. It
is seen that the difference is indistinguishable, and generally
<0.5%. It is also noted in Fig. 3 that the amplitude of the Green's
function 4meq G, starts to oscillate when the field-to-source distance
is greater than a certain value (i.e., log;okpp > —0.5). This oscil-
lation is due to the interference of the five propagating modes ex-
isting in the structure.

To indicate the effect of top metallic cover on the microstrip
Green’s function, Fig. 4 compares the amplitudes of 47e, G, for an
open microstrip substrate of [1] and the top-covered microstrip sub-
strate of Fig. 2(b) with different plate heights. It is seen that when
the top plate gets close to the substrate surface (e.g., d = h =
0.1)), the Green’s function is significantly disturbed.

IV. Discussions AND CONCLUSION

Although the modal solution and the more general spectral in-
tegral solution are available for the problems of dipole radiation in
homogenecous or layered dielectrics between two ground planes,
they are usually time-consuming in numerical calculation. This pa-
per presents a numerically efficient technique to obtain the closed
form vector and scalar potentials for this type of problems. It has
been shown that the closed form expression of this paper usually
consists of no more than ten terms, each term standing for either a
complex image or a propagating mode. As long as the complex
image coefficients a, and b, are obtained, the closed form expres-
sion can be used for calculating the potential at any point in the
concerned region.

It is noticed that the complex image coeflicients g, and b, in (12)
and (21) are dependent on the source and field locations z and z'.
It fact we could also make the approximated spectral function in-
dependent of z and z’, as done in [1]. This is at the expense of extra
analytical manipulation as well as an increased number of image
terms in the closed form expression. In practical MMIC circuits,
metallizations may have finite thickness or may be located in dif-
ferent dielectric layers. Therefore several sets of complex image
coefficients may be needed to represent different heights z and z’
of the source and field locations. '

In obtaining the complex image coefficients, an Nth order poly-
nomial equation and two N X N matrix equations are to be solved

2.0 - Iog‘m(41rsqu)
1.8
1.8 &=12.6,h=0.12,
14 z=7'=0.1A¢
1N - d=0.1),
1.2 4 — = d=0.6A¢
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Fig. 4. Effect of top cover on the microstrip Green’s function.

in Prony’s method [10], where N (usually =<35) is the number of
images. This process takes little time on a personal computer. In
implementing Prony’s method, similar to [1], the truncation point
T, and the number of images N have to be set a priori. The trun-
cation point of the approximation path should be chosen far enough
from the origin of complex k plane so that sufficient spectral in-
formation is provided to generate the complex images. For in-
stance, in the situation of z = z' the spectral function T, approaches
to a constant when k, = oo. This constant corresponds to an image
which coincides with the source dipole. Therefore the truncation
point must be chosen such that at least two points are sampled near
the constant region to recover this image term. The accuracy of the
Green’s function approximation is sensitive to the number of im-
ages N. Taking N in the range of 3 ~ 5 is typical to obtain an
accuracy of 0.5%. A larger number N does not give any better
results, and sometimes may cause the results to diverge.

It is the choice of N and T, not the intermediate steps of the
complex image coefficients, that ultimately affect the accuracy of
the Green’s function. Therefore as long as one follows the Prony’s
method procedure given in [10], one need not worry about the ac-
curacy of the complex image coefficients a, and b,.

Although only a shielded microstrip substrate is examined as a
layered dielectric example, the method of this paper is equally ap-
plicable to the structures with multiple dielectric layers between
two ground planes.
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Comparison of Measured and Simulated Data in an
Annular Phased Array Using an Inhomogeneous
Phantom

Dennis M. Sullivan, Dale Buechler, and Frederic A. Gibbs

Abstract—Computer simulation is being used to plan patient treat-
ments for deep regional hyperthermia in the Sigma 60 applicator of
the BSD-2000 Hyperthermia System. The method used is the finite-
difference time-domain (FDTD) method. Like all simulation methods,
confirmation of the accuracy via measured data is important. Until
now, most such measurements in the Sigma 60 were done with homo-
geneous phantoms. A new phantom using both muscle and fat equiv-
alent material has been constructed, presenting a more challenging
simulation problem to the FDTD method. The description of the phan-
tom and the results of comparisons between simulated and measured
data are presented.

I. INTRODUCTION

In deep regional hyperthermia cancer therapy, one of the most
widely used devices is the Sigma 60 applicator of the BSD-2000
Hyperthermia System (BSD Medical, Salt Lake City, UT). This
employs eight dipole antennas positioned around a 60 cm annulus,
a configuration known as an annular phased array (APA). The eight
dipoles are arranged in four groups of two each, referred to as
quadrants. Although the four quadrants are all driven at the same
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frequency (the frequency range is 60 to 120 MHz), the amplitude
and phase on each quadrant can be set independently. This ability
to independently set the amplitudes and phases. as well as the se-
lection of the frequency, presents a wide range of input parameters
which has motivated the use of computer simulation for treatment
planning in the Sigma 60 [1]-[3].

Recently, the implementation of a clinical treatment planning
program using the finite-difference time-domain (FDTD) method
has been described [4]. The accuracy of this method was tested by
comparison of measurements made in a homogeneous phantom. In
this paper, further verification will be presented with temperature
measurements in an inhomogeneous phantom, which we will refer
to as the Utah phantom.

II. PHANTOM CONSTRUCTION

The Utah phantom used is a CDRH [5] elliptical phantom filled
with two materials, one to simulate muscle and one to simulate fat
or bone (Fig. 1). The muscle material was constructed from a rec-
ipe by Guy [6], with a slight variation: only 75% as much salt was
used, giving a material with estimated relative dielectric constant
of 60 and conductivity of 0.58 S/m. The fat material was con-
structed from a recipe by Lagendijk and Nilsson [7], giving a ma-
terial with a relative dielectric constant of about 8 and a conductiv-
ity of about 0.05 S/m.

The phantom was constructed to roughly simulate the lower ab-
domen and pelvis. although the intent of its design was more that
of a buildable inhomogeneous structure than an anatomic simula-
tion. Thirteen catheters were placed in such a way that temperature
measurements could be made at enough points to be representative
of the SAR pattern within the phantom. The catheters were 16
gauge, large enough to allow easy movement of the temperature
probes of the BSD-2000 [8].

III. EXPERIMENTAL PROCEDURE

The energy deposition pattern throughout the phantom was de-
termined by measuring the temperature increase at various points
after power was applied for a short period of time in the Sigma 60
applicator. Using three temperature probes at a time, the probes
were pushed all the way to the ends of the catheters. The automatic
mapping feature of the BSD-2000 was used to move the probes in
1 cm increments, waiting 4 seconds for the temperature measure-
ment to reach equilibrium, and recording it before moving on to
the next position. One such reading was made before applying
power and another was made after applying 1000 W for 2 min. The
temperature difference was then calculated. These temperature dif-
ferences were compared to the SAR patterns predicted by the FDTD
simulation.

To do the FDTD simulation, a model of the phantom was sim-
ulated by assigning the corresponding properties of fat or muscle
to the 1 cm cells which make up the 3-dimensional model. (This is
similar to the way patient models are created for clinical simula-
tions [9].) Approximately 30 000 cells were required for this phan-
tom. The 3-D problem space used to simulate the phantom and the
Sigma 60 was 74 X 74 X 68 = 372 368 cells. This required 10
megawords of core memory and 200 CPU seconds on a Cray YMP
supercompter to simulate. Four such runs, corresponding to the
four quadrants were necessary to obtain the complex E field at every
point in the phantom; the SAR’s were determined from these com-
plex E fields. (This is described in detail in [4].)
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